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Abstract 

A method is developed for designing a special iron shielded superconducting magnet 

for MRI in this paper. The shield is designed as an integral part of the cryostat and 

high permeability and high saturated magnetization iron material is adopted. This 

scheme will result in a compact iron shielded magnet. In the presented design, the 

finite element(FE) method is adopted to calculate the magnetic field which is 

produced by superconducting coils and. nonlinear iron material. The FE method is 

incorporated into the simulated annealing method which is employed for 

corresponding optimization. Therefore, geometrical configurations of both coils and 

iron shield can be optimized together here. This method can deal with discrete design 

variables which are defined to describe cable arrangements of coil cross sections. 

Detail algorithm of presented design is described and an example for designing 1.5T 

clinical iron shielded magnet for MRI is shown in this paper. 
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1. Introduction 

In clinical MRI system with superconducting magnet, shield is commonly used to 

avoid environment exposing to the fringe field which is produced by the magnet. The 

shield is also capable of preventing magnetic substances in the vicinity of the magnet 

from distorting the homogeneity. Currently, there are two manners of shield which are 

already used in practical MRI: iron shielding and active shielding.  

The iron shielding is accomplished by placing iron around the superconducting 

                                                              
*  This work is supported partly by the Natural Science Foundation of China (No.60871001) 
†  Correspondence to Donglin Zu; E‐mail:dlzu@pku.edu.cn 



 

  2

coils. The iron which forms an external flux return path for the magnetic field 

produced by the coils will reduce the fringe field of the magnet. Active shielding 

approach employs superconducting active shielding coils to screen the magnetic field 

outside the magnet. Active shielding has better shield effect than iron shielding, 

especially, iron is hard to achieve good shield effect in high field magnet (higher than 

1.5T), because it is easily to get magnetically saturated. However for 1.5T (or lower 

1.0T and 0.5T) magnet, compare to active shielding, iron shielding saves 

superconducting cables for shielding and the iron used for shield is much cheaper(1). 

Additionally, the structure of framework for superconducting coils is much simpler 

and easier to fabricate in iron shielding magnet than in active shielding magnet. So, 

adopting iron shield will result in low material and fabrication cost. 

In previous designs [2-4], the sizes of iron shielding magnets are usually huge, 

for example, lengths are over 2.3m and widths are over 2m for 1.5T magnet. Those 

are caused by the thickness and the placement manner of the iron shield. The 

thickness of shield for 1.5T magnet is commonly around 0.2m [2]. The shields are 

installed outside around the magnet [4-6]. However, in clinical MRI, short magnets 

are desired to reduce the perception of claustrophobia for patients. In this work, a 

scheme for a compact iron shielded magnet is presented. In this scheme, the iron 

shield is designed as a part of the wall of the vacuum chamber instead of an 

independent component outside the magnet in previous designs. In addition to this, 

high magnetic permeability and high saturated magnetization iron material such as 

magnetic pure iron or low carbon steel which will greatly reduce the thickness of the 

shield is adopted for the shield.  

In the problem of optimizing the iron shielded superconducting magnet which 

includes current-carrying coils and ferromagnetic materials, the accurate magnetic 

field calculation is very important. The magnetic field produced by coils which is not 

affected by other sources can be easily derived from the Biot-Savart law. However, 

the ferromagnetic material is more complicated because it is magnetized by every 

other external source and its magnetization is nonlinear because of its nonlinear 

susceptibility. As well known, finite element (FE) methods are accurate and widely 

used to solve this type of problem, they were applied to evaluate the magnetic field 

generated by ferromagnetic materials of iron shielded magnets in several previous 

works [7-10], but they were not well incorporated into the optimizing procedure. In 

addition to FE methods, the equivalent magnetization current method which treated 
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the magnetization of iron shield as equivalent current was employed to deal with field 

computations for iron shielded magnet [3,11,12]. A rapid field calculation scheme for 

the effect of ferromagnetic material was presented by Zhao et al. In this scheme, 

circular rings are considered as basic units of iron shield and magnetic field produced 

by the ring could be calculated under the condition of arbitrary external sources [1,13]. 

These two methods take the advantage of directly calculating the expansion 

harmonics of the magnetic field generated by the iron shield which would facilitate 

coils optimization. But lengthy and complicated computations are still unavoidable 

for the magnetization of nonlinear ferromagnetic materials.  

According to the basic requirements of MRI, configuration of coils and the 

geometry of the shield in the iron shielded magnet for MRI must be optimized, the 

main goals are to generate homogeneous magnetic field to the extent of a few parts 

per million (ppm) within the diameter of sensitive volume (DSV) and restrict the 

fringe field to achieve the effect of shielding. In optimization schemes of most prior 

works [2,3,7-12], the geometries of iron shields were pre-defined and only the 

configurations of coils are optimized. It is difficult for those schemes to optimize sizes 

of the shield which are important for designing a compact iron shielded magnet.  

The Levenberg–Marquardt method was applied by Zhao et al to optimize geometrical 

configurations of superconducting and ferromagnetic materials together in hybrid 

shielding magnets [1]. But all the optimizing parameters had to be treated as 

continuous design variables in that method. Actually coils are wound by 

superconducting cables. The axially symmetrical coils have rectangular cross sections 

which can be defined by arrangements of the cables. To optimize configurations of the 

coils, it’s better to treat the numbers of turns and layers of cables as design variables. 

In this study, the simulated annealing (SA) method which can deal with discrete 

design variables is applied to optimize both configurations of coils and the shield for 

the iron shielded magnet. Additionally, the SA method which is a global optimization 

technology can prevent the optimizing results from being trapped into local minimal. 
In this work, a scheme is presented for a compact iron shielded superconducting 

magnet of MRI with main field not higher than 1.5T. An optimal method which 

combines the FE method and the SA method is described to design this type of 
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magnet. The geometrical configurations of superconducting coils and iron shield can 

be optimized simultaneously by this method. In addition, the method is capable of 

deal with discrete parameter spaces such that numbers of turns and layers of coils can 

be treated as design variables. The optimal design by the presented method for a 

clinical 1.5T iron shielded magnet is detailed in this paper.  

 

2. Method 

2.1 Scheme of the iron shield 

     The cryostat of the superconducting magnet for MRI usually comprised three 

thermal shields. The first shield encloses a helium chamber and the second shield is 

provided around the outer periphery of the first shield. These two shields are cooled 

continuously by the cold head and kept at specific temperatures. The third shield 

enclosing the second one is the outmost shield which is at room temperature.  

In conventional manner of iron shield, the shield is isolated from the magnet and 

located outside around the third thermal shield. The structure of the magnet with 

conventional iron shield is showed in Figure 1(a). In our scheme, a part of the third 

thermal shield is made of ferromagnetic material which is showed in Figure 1(b), it is 

designed as the iron shield. Compare with conventional structure, this structure save 

 

 

(a)                                                                           (b) 
Fig 1. Schematic of iron shielded superconducting magnet: (a) A magnet with conventional iron 
shield. (b ) The magnet adapting novel iron shield scheme. 1 - iron shield, 2 - superconducting 
coil, 3 - the first thermal shield enclosing the helium chamber, 4 - the second thermal shield, 5  
- the third thermal shield at room temperature.  
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the space outside of the magnet for iron shield, so it will result in a more compact iron 

shielded magnet. 

Magnetic pure iron with high magnetic permeability and high saturated magnetization 

is adopted. Its magnetic shielding effect will be greatly improved with this material 

comparing to common iron. Thus thickness and weight of the iron shield could be 

greatly reduced which will lead to a compact magnet. The magnetization curve of the 

magnetic pure iron used for the shield is shown in Figure 2.  

 
Fig. 2 The magnetization curve of the magnetic pure iron used 

 

2.2. Field calculation 

     In our optimizing procedure, the FE method is applied to calculate the magnetic 

field produced by the iron shielded magnet. The 2D finite element analysis could be 

used because of cylindrically symmetric structure of the magnet. The magnetostatic 

equation below is used to solve the problem.  
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Where A  is the magnetic vector potential, μ  is the magnetic permeability and J  

is the current density. Based on this equation, the finite element matrix equations can 

be derived by the Galerkin’s method [14].  

The geometry model of the magnet is meshed by second order triangular and 

quadrilateral finite elements (showed in Figure 3). The sizes of the elements are set 
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small enough (about 1mm) to achieve high calculation accuracy. 

 
The sparse matrix equations of this problem are solved by the preconditioned dual 

conjugate gradient method. In order to take into account the non-linearity magnetic 

characteristic of iron material, the Newton Raphsan iterative method is used to solve 

the non-linear equation.  

Once the vector potential A  is obtained, the flux density B  can be derived from 

the equation below: 

                           AB
rr

×∇= .                      (2) 

The axial magnetic flux density zB  is the component mainly concerned about in 

MRI. Its expansion in spherical harmonics is 

                           0 (cos )n
z n n
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            (3) 

Wherein r  and θ  are components of positions of field points in spherical 

coordinates, ϕ  is absent in this equation because of the cylindrically symmetric 

structure of the magnet. After the axial flux density zB  in DSV is obtained, 

expansion coefficients nA  can be calculated by applying linear regression method. In 

our calculation of the Eq. (3), spherical harmonics not higher than 12th order are 

considered because items of higher order are neglectable. 

 

2.3. Optimizing 

Fig 3. The finite element mesh for the model of the iron shielded 
superconducting magnet. 
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     The geometrical configurations of the iron shielded superconducting magnet are 

set as design variables, which is showed in the schematic (Figure 4) of the geometry 

model of the magnet. The structure of three coil pairs is adapted in our design. The 

continuous variables )4,3,2,1( =iyi are the sizes and locations of the iron shield. The 

continuous variables )6,,2,1( L=ixi are the locations of the coils. The turns 

)3,2,1( =ini and layers )3,2,1( =imi of the coils are set as discrete variables. The 

length and width of the magnet can be controlled by setting constraints for the 

variables ix  and iy .  

 
 

The SA method introduced by Metropolis et al, is usually applied to search for 

optimal arrangement of elements in large scale. It has been used to optimize gradient 

coils and superconducting magnets of MRI [15,16]. The SA method simulates the way 

in which a metal slowly cool to minimal energy state. The SA method is a global 

optimization technique. It avoids being trapped into a local energy minimal by using 

the Metropolis accept rule which allows the state energy to increase with a probability 

linked to Boltzmann statistics during the optimization procedure. Additionally, the SA 

method takes the advantage of dealing with discrete design variables. An adaptive 

cooling approach which was presented by Hoffmann et al. is adapted for the annealing 

cooling scheme in our SA method. Details of the method are described in the 

reference [17] and not repeated here.  

Fig 4. The geometry model of the magnet and design variables setting.   
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To optimize the iron shielded superconducting magnets, the energy function being 

minimized is expressed in terms of the magnet properties: 

shieldcoil
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In this equation, the first item controls the main field of the magnet, in which 0B  is 

the calculated main field, objB  is the objective main field (1.5T). The second item 

controls the homogeneity in terms of field expansion given in Eq. (3), wherein dsvR  
is the diameter of the DSV. The fringe field is controlled by the third item which sums 

the field values mBS  at several points along lines outside the magnet, a 5 gauss field 

is desired at those lines. The fourth and fifth items constrain the winding volume of 

the superconducting wire coilV  and the weight of the iron shield shieldW  respectively. 

1W , 2W , 3W , 4W and nw are weighting factors for the items above. 

 

3. Results 

     The method described above is implemented in C code and run on a HP 

workstation. A 1.5T iron shielded superconducting magnet is designed by applying 

the proposed method. To design a compact magnet, the magnetic pure iron is used and 

a novel structure described above is adapted for the iron shield.  

The total length of the magnet is 1720 mm and the width is 1880 mm, the DSV is a 

sphere with 40 mm diameter in the center of the magnet, and the diameter of the room 

temperature bore is 900 mm. The optimizing results are shown in Figure 5. Figure 5 

(a) gives the 0B  field distribution in the DSV, the peak to peak inhomogeneity in the 

DSV is 2.9ppm. Figure 5 (b) gives the fringe field distribution outside the magnet, the 

5 Guass line is 5m in the axial direction and 3.5m in the radial direction. The weight 

of the iron shield is 14 ton. Table 1 lists optimized values of the design 

variables.
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Table 1. Optimized value of design variables 

 variable value variable value 

Coil  N1(turns) 27 N4(layers) 28 

configurations N2(turns) 63 N5(layers) 16 

 N3(turns) 89 N6(layers) 28 

 X1(mm) 526.1 X4(mm) 85.5 

 X2(mm) 523.6 X5(mm) 285.1 

 X3(mm) 527.0 X6(mm) 657.2 

Iron shield  Y1(mm) 150.0 Y4(mm) 160.0 

configurations Y2(mm) 290.0 Y5(mm) 860.0 

 Y3(mm) 780.0   

   

The best so far energy value at each cooling step in the optimizing procedure is shown 

in Figure 6. It clearly illustrates that the system energy decreases as the system cools 

down and tends to converge to the global optimal value after 120 steps of cooling 

down. 

(a)                                                                             (b) 

Fig 5. Computational results of the 1.5T iron shielded superconducting magnet: (a) 0B field 

distribution in the DSV; (b ) The fringe field distribution outside the magnet.  
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4. Conclusion  

     In this work, a novel scheme of iron shield for the superconducting magnet of 

MRI is presented. The scheme combined with adapting high magnetic permeability 

and high saturated magnetization iron material to improve shielding effect will result 

in more compact iron shielded superconducting magnet. To design this type of magnet, 

an optimizing design method is described in this paper. In this method SA is applied 

for optimization and FE is used for field calculation, which takes the advantage of 

optimizing the configurations of the coils and the shield simultaneously. The design 

results of the clinical 1.5T superconducting magnet detailed in the paper demonstrates 

the efficiency of the proposed method. 
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